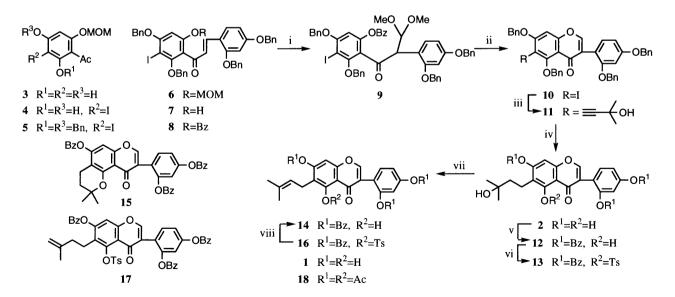
Regioselective Synthesis of Prenylisoflavones: Syntheses of Luteone and Luteone Hydrate


Masao Tsukayama,* Hironari Wada, Masashi Kishida, Masaki Nishiuchi, and Yasuhiko Kawamura Department of Chemical Science and Technology, Faculty of Engineering, The University of Tokushima, Minamiiosaniima, Tokushima 770-8506

(Received September 4, 2000; CL-000824)

The palladium-catalyzed coupling reaction of 6iodoisoflavone, prepared from 3'-iodoacetophenone derivative, with 2-methyl-3-butyn-2-ol gave the 6-alkynylisoflavone derivative, which was hydrogenated to give the 6-alkylhydroxyisoflavone (luteone hydrate) **2**. Dehydration of **2** gave 2',4',5,7tetrahydroxy-6-prenylisoflavone (luteone).

Prenyl (=3-methyl-2-butenyl)isoflavones and (3-hydroxy-3methylbutyl)isoflavones are widely distributed in nature and have antifungal activity.¹ Luteone, being known as a phytoalexin, was first isolated in 1973 from immature fruits of Lupinus luteus (Leguminosae).² The structure was assigned as 2'.4'.5.7tetrahydroxy-6-(3-methyl-2-butenyl)isoflavone (1) by spectroscopic and chemical studies. More recently, the same isoflavone 1 was isolated from the roots of yellow lupin (L. luteus L., cv. Barpine) together with luteone hydrate, the structure of which was assigned to be 2',4',5,7-tetrahydroxy-6-(3-hydroxy-3methylbutyl)isoflavone (2) by spectroscopic analysis.³ The total syntheses of both isoflavones 1 and 2 have not been achieved vet; however, the dimethyl ether of luteone has been synthesized.⁴ The reason seemes to be due to the difficulty in introducing regioselectively an alkyl or alkenyl group into the isoflavone nucleus, protection and deprotection. In view of the isolation of 1 and 2 from the same natural source, it is considered that 2 would be a precursor of 1 and dehydration of 2 would lead to 1. We wish to report here on the first syntheses of 1 and 2 by using the palladium(0)-catalyzed coupling reaction⁵ of the corresponding iodoisoflavone with 2-methyl-3-butyn-2-ol.

The catalytic hydrogenation of 2',4'-bis(benzyloxy)-6'methoxymethoxyacetophenone⁶ over Pd/C, followed by iodination of the resultant 2',4'-dihydroxyacetophenone 3 with I_2 and $H_5IO_6^7$ gave the 3'-iodoacetophenone 4^8 in high yield. Compound 4 was converted into the bis(benzyloxy)acetophenone 5,8 the structure of which was determined by direct comparision with a sample of the isomer, 2',4'-bis(benzyloxy)-5'iodo-6'-methoxymethoxyacetophenone (mp 99-100 °C).^{6,9} The mixture of 5 with the isomer showed a marked depression in the melting point relative to that of each compound. The condensation of 5 with 2,4-bis(benzyloxy)benzaldehyde gave the 6'methoxymethoxychalcone 6, and then the methoxymethyl group in the chalcone was cleaved by treatment with dilute HCl to give the 6'-hydroxychalcone 7. The oxidative rearrangement of the 6'-benzoyloxychalcone 8, derived from 7, with thallium(III) nitrate trihydrate (TTN)^{6,10} gave the acetal derivative 9, which was converted into the 6-iodoisoflavone 10^{11} The coupling reaction of 10 with 2-methyl-3-butyn-2-ol gave the 6-(3-hydroxy-3-methylbutynyl)isoflavone 11. The catalytic hydrogenation of 11 gave 2',4',5,7-tetrahydroxy-6-(3-hydroxy-3-methylbutyl)isoflavone (2).¹² The ¹H NMR spectrum of 2

Scheme 1. Reagents and conditions: i) TTN, MeOH/CHCl₃, 30 °C, 4 h, and then 10% HCl; ii) 10% NaOH, MeOH/Dioxane, 30 °C, 2 h (70% from 8); iii) 2-methyl-3-butyn-2-ol, PdCl₂ (3 mol%), PPh₃ (6 mol%), CuI (3 mol%), NEt₃/DMF, 75 °C, 2 h (71%); iV) H₂, Pd/C, MeOH/Dioxane (96%); V) PhCOCl, K₂CO₃, Me₂CO, reflux, 30 min (84%); Vi) TsCl, K₂CO₃, Me₂CO, 60 °C, 20 min (91%); Vii) TsOH, Toluene, 110 °C, 45 min, and then PhC(Cl)=NOH, CH₂Cl₂ (66%); Viii) BCl₃, CH₂Cl₂, room temperature, 15 min (95%).

Compound	2-H	8-H	3'-H	5'-H	6'-H	Me	CH ₂	CH=C	ОН
1	8.14s	6.53s	6.48d (<i>J</i> =2.4)	$\begin{pmatrix} 6.44 \text{dd} \\ \left(J=2.4 \\ 8.3 \right) \end{pmatrix}$	7.12d (<i>J</i> =8.3)	1.65s 1.78s	3.37d (<i>J</i> =7.3)	5.28t (<i>J</i> =7.3)	8.31br s, 8.43br s 9.23br s, 13.06s
2	8.15s	6.52s	6.49d (<i>J</i> =2.4)	$\begin{pmatrix} 6.44dd \\ (J=2.4 \\ 8.3 \end{pmatrix}$	7.12d (<i>J</i> =8.3)	1.26s (6H)	1.71m 2.79m		3.59br s 8.32s, 8.43s 9.29br s, 13.05s

Table 1. ¹H NMR (400 MHz, CD_3COCD_3) data for prenyl- and alkylisoflavones 1 and 2^a

^as: singlet; d: doublet; dd: double doublets; t: triplet; br: broad; m: multiplet.

was identical with that of a natural sample of luteone hydrate³ (Table 1). On the basis of these results, the structure of luteone hydrate was unequivocally established to be 2',4',5,7-tetrahydroxy-6-(3-hydroxy-3-methylbutyl)isoflavone (**2**).

The tribenzoate derivative 12 of 2 was converted into 5tosyloxyisoflavone 13, which was dehydrated with $BF_2 \cdot OEt_2$ to give the 5-hydroxy-6-prenylisoflavone 14 and the dihydropyran derivative 15. The formation of 15 supported definitely the structure of 2 and decreased the yield of 14. The tosylate 13 was dehydrated with TsOH·H₂O to give a mixture of the 6prenylisoflavone 16 and the regioisomeric 6-(3-methyl-3butenyl)isoflavone 17. The ¹H NMR spectrum of the tosylate mixture (16 and 17) showed the ratio of 16 to 17 to be 85:15 [peaks due to $CH_2CH=C(CH_3)_2$ at $\delta=3.36$ (2H, d) and CH₂CH₂C(CH₃)=C<u>H</u>₂ at δ = 4.57 (2H, s)]. The mixture (16 and 17) reacted quantitatively with benzohydroximoyl chloride¹³ in dry CH₂Cl₂ at room temperature to give a mixture of the unchanged 6-prenylisoflavone 16 and the terminal alkenecyclic adduct, and then 16 was purified by silica-gel column chromatography. The detosylation of 16 with BCl₃, followed by hydrolysis of the resultant compound 14 with 10% NaOH in a mixture of methanol and dioxane at room temperature gave 2',4',5,7-tetrahydroxy-6-(3-methyl-2-butenyl)isoflavone (1)¹⁴ (¹H NMR in Table 1), which was converted into the tetraacetate derivative 18. The ¹H NMR, IR and UV spectral data for 1 were completely identical with those of a natural sample of luteone.^{2,3} On the bases of these results, the structure of natural luteone was first unequivocally established to be 2',4',5,7tetrahydroxy-6-(3-methyl-2-butenyl)isoflavone (1).

The present regioselective synthesis of iodoisoflavones and the palladium(0)-catalyzed coupling reaction of iodoisoflavones with 2-methyl-3-butyn-2-ol have shown to be an efficient and useful procedure for the syntheses of prenyl- and alkylpolyhydroxyisoflavones and *O*-alkylated prenylisoflavones.

References and Notes

- P. M. Dewick, in "The Flavonoids: Advances in Research Since 1980," ed. by J. B. Harborne, Chapman and Hall, London (1988); J. L. Ingham, S. Tahara, and J. B. Harborne, Z. Naturforsch., 38C, 194 (1983); M. D. Woodward, Phytochemistry, 18, 363 (1979); J. B. Harborne, J. L. Ingham, L. King, and M. Payne, Phytochemistry, 15, 1485 (1976).
- 2 H. Fukui, H. Egawa, K. Koshimizu, and T. Mitsui, Agric. Biol. Chem., 37, 417 (1973).

- 3 Y. Hashidoko, S. Tahara, and J. Mizutani, *Agric. Biol. Chem.*, **50**, 1797 (1986).
- 4 A. C. Jain, A. Kumar, and R. C. Gupta, J. Chem. Soc., Perkin Trans.1, **1979**, 279.
- 5 K. Sonogashira, Y. Tohda, and N. Hagihara, *Tetrahedron Lett.*, **1975**, 4467.
- 6 M. Tsukayama, H. Li, K. Tsurumoto, M. Nishiuchi, and Y. Kawamura, Bull. Chem. Soc. Jpn., 71, 2673 (1998).
- 7 V. K. Ahluwalia, C. Prakash, and R. S. Jolly, J. Chem. Soc., Perkin Trans. 1, 1981, 1697.
- 8 Compound **4**: mp 160–161 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.69 (3H, s, CH₃CO), 3.52 (3H, s, OCH₃), 5.28 (2H, s OCH₂), 5.98 (1H, s, 4'-OH), 6.44 (1H, s, 5'-H), 14.97 (1H, s, 2'-OH). Found: C, 35.25; H, 3.17%. Calcd for C₁₀H₁₁O₅I: C, 35.52; H, 3.28%. Compound **5**: mp 96–97 °C; Found: C, 55.66; H, 4.48%. Calcd for C₂₄H₂₃O₅I: C, 55.61; H, 4.47%.
- 9 M. Tsukayama, M. Kikuchi, and S. Yoshioka, *Chem. Lett.*, 1993, 1895.
- 10 L. Farkas, Á. Gottsegen, and M. Nógrádi, J. Chem. Soc., Perkin Trans. 1, 1974, 305.
- Compound 10: mp 174–176 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.02, 5.03, 5.06 and 5.25 (each 2H, s, CH₂), 6.63 (1H, dd, *J*=2.4 and 8.5 Hz, 5'-H), 6.67 (1H, d, *J*=2.4 Hz, 3'-H), 6.73 (1H, s, 8-H), 7.20–7.75 (21H, m, Ar-H × 21), 7.78 (1H, s, 2-H). Found: C, 66.64; H, 4.58%. Calcd for C₄₃H₃₃O₆I: C, 66.85; H, 4.30%.
- 12 Compound 2: mp 229–231 °C (lit.,³ pale yellow glassy solid); IR (KBr) v 3350, 2975, 1645, 1620, 1460, 1310, 1065, 830 cm⁻¹; UV λ_{max} nm(log ε) (MeOH) 265 (4.45), 290sh (4.19), 345sh (3.58), (+AlCl₃) 267 (4.46), (+NaOAc) 269 (4.44), 340 (3.93). Found: C, 64.22; H, 5.46%. Calcd for C₂₀H₂₀O₇: C, 64.51; H, 5.41%.
- S. Kanemasa, M. Nishiuchi, A. Kamimura, and K. Hori, J. Am. Chem. Soc., 116, 2324 (1994); M. Tsukayama, H. Li, M. Nishiuchi, M. Takahashi, and Y. Kawamura, J. Chem. Res. (M), 1998, 1181.
- 14 Compound 1: mp 222–224 °C (lit.,² mp 225–226 °C); IR (KBr) v 3425, 3300, 3100br.,1650, 1615, 1590, 1550, 1215, 1060, 815 cm⁻¹; UV λ_{max} nm(log ε) (MeOH) 266 (4.56), 280 (4.33), 340 (3.63), (+AlCl₃) 271 (4.41), (+NaOAc) 269 (4.55), 340 (3.83). Found: C, 67.55; H, 5.21%. Calcd for C₂₀H₁₈O₆: C, 67.79; H, 5.12%.